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A Extended and Additional Exploration Scenarios
In addition to the exploration scenario shown in the main paper, we show here results of the following
exploratory analyses:

• texture influence (Section A.1 and Section A.2),

• shape sensitivity (Section A.3),

• low frequency information (Section A.4),

• high frequency information (Section A.5),

• adversarial attacks (Section A.6),

• fading to black (Section A.7),

• geometric transformations (Section A.8),

• as well as geometric transformations in combination with background modifications (Section A.9).

• development of activations & feature visualizations during fine-tuning (Section A.10).

For the respective scenarios, we compare the standard model (Inception-V1 trained on ImageNet)
with the Stylized-ImageNet trained model (Inception-V1 fine-tuned with Stylized-ImageNet [1]) in Sec-
tions A.1, A.2, A.3, A.4, A.5 and with the adversarially trained model (Inception-V1 adversarially fine-
tuned [2, 5]) in Section A.6, A.7, A.8, A.9. Finally, we show the development of feature visualizations
during fine-tuning for both models in Section A.10.
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A.1 Texture vs. Shape

Figure A.1 shows a comparison between the standard trained model and the model trained by Stylized-
ImageNet. The middle row shows how cat-related neurons get activated by morphing the texture and
shape, respectively. Please note how the standard model (top row in Figure A.1 e-h) gets strongly
activated by the cat texture, while the respective neurons of the Stylized-ImageNet trained model (bottom
row in Figure A.1 e-h) seem to get more activated by shape changes. Also note that the Stylized-ImageNet
trained model never predicts a cat.

(a) original (b) cat texture (c) cat shape (d) cat shape + texture

(e) original (f) cat texture (g) cat shape (h) cat shape + texture

(i) original (j) cat texture (k) cat shape (l) cat shape + texture

Figure A.1: Object morphing to assess the texture vs. shape conflict: input scene (a-d), activations of four cat-
related neurons in mixed4e (e-h) by the standard model (top) and the Stylized-ImageNet trained model (bottom),
and the predictions (i-l) by the standard model (left) and the Stylized-ImageNet trained model (right).
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A.2 Patch Shuffling

Figure A.2 shows the effect of randomly shuffling image patches on the standard and the Stylized-
ImageNet trained model. The dog is still predicted correctly by both models when shuffling 2 × 2 image
patches (Figure A.2 g). The Stylized-ImageNet trained model is more sensitive to patch shuffling than
the standard model (Figure A.2 h-i). Note how the activations of neuron 429 in layer mixed4b (third
column in Figure A.2 d-f) follow certain regions in the dog face.

(a) k = 2 (b) k = 5 (c) k = 8

(d) k = 2 (e) k = 5 (f) k = 8

(g) k = 2 (h) k = 5 (i) k = 8

Figure A.2: Patch shuffling: increasing the number of randomly shuffled image patches k (a-c), activations of
dog-relevant neurons in mixed4b (d-f) by the standard model (top) and the Stylized-ImageNet trained model
(bottom), and the predictions (g-i) by the standard model (left) and the Stylized-ImageNet trained model (right).
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A.3 Silhouette

Figure A.3 investigates the models’ shape sensitivity by analyzing the dog’s silhouette against a red
background in different poses. The activations of dog-related neurons in mixed4d (Figure A.3 e-h) show
that the standard model seems to be more sensitive to pose changes. Indeed, the predictions (Figure A.3
i-l) of the standard model fluctuate with the pose modifications, while the Stylized-ImageNet trained
model consistently predicts “white wolf” with a very high probability.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure A.3: Analyzing shape influence: different silhouette poses as input (a-d), activations of four dog-related
neurons in mixed4d (e-h) by the standard model (top) and the Stylized-ImageNet trained model (bottom), and
the predictions (i-l) by the standard model (left) and the Stylized-ImageNet trained model (right).
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A.4 Blur

In the case study, a suspicion of one user was that the model trained on Stylized-ImageNet would be
more sensitive to high-frequency information. Blurring the image would therefore disturb this model more
heavily than the standard model. Figure A.4 illustrates that this is not necessarily the case: Activations
of dog-related neurons gradually degrade by applying blur for both models (Figure A.4 d-f). At a high
blur level, both models have very uncertain predictions (Figure A.4 i).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.4: Blurring the image: input image with gradual blur (a-c), activations of oriented dog heads in mixed4a
(d-f) by the standard model (top) and the Stylized-ImageNet trained model (bottom), and the predictions (g-i)
by the standard model (left) and the Stylized-ImageNet trained model (right).
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A.5 High-Pass Filtering

In contrast to low-pass filtering shown in the previous section, here we show the effects of high-pass
filtering on the standard trained model and the Stylized-ImageNet trained model (Figure A.5). As
the frequency threshold is increased to a high level, the activations of dog-related neurons considerably
decrease for the standard model (Figure A.5 f, top row), while the same neurons are still highyly activated
for the Stylized-ImageNet trained model (Figure A.5 f, bottom row), and it also still predicts a canine
(Figure A.5 i, right column).

(a) f = 0 (b) f = 15 (c) f = 30

(d) f = 0 (e) f = 15 (f) f = 30

(g) f = 0 (h) f = 15 (i) f = 30

Figure A.5: Applying a high-pass filter on the input image: input image with increasing frequency threshold
(a-c), activations of oriented dog-related neurons in mixed4e (d-f) by the standard model (top) and the Stylized-
ImageNet trained model (bottom), and the predictions (g-i) by the standard model (left) and the Stylized-
ImageNet trained model (right).
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A.6 Adversarial Attack

Figure A.6 shows an adversarial attack (target class “Egyptian cat”) for a standard and an adversarially
trained model. Figure A.6 c-d, bottom row shows how the activations of the adversarially trained model
remain unaffected, while the cat-related neurons get strongly activated by the attack for the standard
model (Figure A.6 c-d, top row). Consequently, the standard model’s prediction switches to the attack’s
target class (Figure A.6 f, left column), while the adversarially trained model still predicts a German
shepherd with very high confidence.

(a) (b)

(c) (d)

(e) (f)

Figure A.6: Adversarial attack with target class “Egyptian cat”: input image before (a) and after (b) a successful
attack, activations of cat-related neurons (c,d) by the standard model (top) and the adversarially trained model
(bottom), and the predictions (e,f) by the standard model (left) and the adversarially trained model (right).
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A.7 Alpha

Figure A.7 illustrates the saturation effect [3] by gradually blending the input image to black. Note
how the activations of the standard model (Figure A.7 d-f, top row) remain high and the predictions
(Figure A.7 g-i, left column) remain correct even though the α is already very low on the last image
so that humans can no longer perceive any content. The adversarially trained model, however, is more
sensitive to the reduced image contrast.

(a) α = 50 (b) α = 30 (c) α = 10

(d) α = 50 (e) α = 30 (f) α = 10

(g) α = 50 (h) α = 30 (i) α = 10

Figure A.7: Reducing the overall alpha and blending into black: input image with different alpha values (a-c),
activations of oriented dog heads in mixed4a (d-f) by the standard model (top) and the adversarially trained model
(bottom), and the predictions (g-i) by the standard model (left) and the adversarially trained model (right).
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A.8 Rotation

Figure A.8 compares two models’ sensitivities to viewpoint changes. From a side view (Figure A.8 a-b),
both models fairly reliably predict a race car (Figure A.8 i-j). However, when looking at the car from
a front-top view (Figure A.8 c), predictions are getting unstable for both models (Figure A.8 k) – in
particular for the adversarially trained model, which does not predict any car-like object as top-5 target
(Figure A.8 k, right). Looking at the activations of neurons that are important for the prediction of race
cars in mixed4b (Figure A.8 e-h), it seems that wheels play a very important role. As the car is rotated
and wheels disappear, the activations of these neurons decrease considerably (Figure A.8 g-h).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure A.8: Orbiting around the race car: input scene from different camera angles (a-d), activations of four race
car-related neurons in mixed4b (e-h) by the standard model (top) and the adversarially trained model (bottom),
and the predictions (i-l) by the standard model (left) and the adversarially trained model (right).
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A.9 Roll + Background

To assess the sensitivity to the context, we analyze the influence of the main object’s rotation and the
background image in Figure A.9. While the standard model still predicts dog breeds after a 180◦rotation
(Figure A.9 h, left column), the adversarially trained model has a tendency to predict sea animals (Fig-
ure A.9 h, right column). After changing the background, none of the models predicts a dog (Figure A.9
i). The adversarially trained model also has artifacts in the top-5 in case of a street background (Fig-
ure A.9 i, right column). Also, note how the dog-related activations decrease once the object is rotated
(Figure A.9 e) and the background is swapped (Figure A.9 f) for both models.

(a) 0◦+ grass (b) 180◦+ grass (c) 180◦+ street

(d) 0◦+ grass (e) 180◦+ grass (f) 180◦+ street

(g) 0◦+ grass (h) 180◦+ grass (i) 180◦+ street

Figure A.9: Rotating the main object and changing the background: input image with different rotations and
/ or background images (a-c), activations of dog-related neurons in mixed4d (d-f) by the standard model (top)
and the adversarially trained model (bottom), and the predictions (g-i) by the standard model (left) and the
adversarially trained model (right).
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A.10 Model Fine-Tuning

To better understand what happens during fine-tuning, users can compare models at various intermediate
checkpoints of the fine-tuning process. This is similar to the transfer learning visualizations by Szabo
et al. [4]. However, they investigated transfer learning with different datasets, while we fine-tuned the
models with variants of the same dataset.

Perturber provides 17 selected checkpoints during adversarial fine-tuning and seven selected check-
points during Stylized-ImageNet fine-tuning. We chose to include more checkpoints for the adversarial
fine-tuning because it appears more dynamic compared to the Stylized-ImageNet fine-tuning (as can be
seen in Figure A.10), and generating the required data is computationally expensive.

Figure A.10 shows activations and feature visualizations of neuron 222 in layer mixed4a at various fine-
tuning checkpoints. During Stylized-ImageNet fine-tuning, the activations and feature visualizations stay
relatively consistent. During intermediate steps of adversarial fine-tuning, however, the positive response
vanishes before reappearing after iteration 10K. The corresponding feature visualizations also reflect this
phenomenon by becoming less similar to a dog head intermediately before assuming the appearance of a
smoother version of a dog head than before fine-tuning.

1 10 100 1000 5000 25000 35000 90000

1 10 100 1000 5000 10000 13000 50000

Input

Figure A.10: Activations and feature visualizations of neuron 222 in layer mixed4a at selected fine-tuning
checkpoints. Numbers above and below show the fine-tuning iteration.
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B Case Study Observations & Feedback
Here, we list all observations and feedback recorded during the case studies. Table B.1 shows the research
focus of the individual study participants.

Table B.2 lists all reported observations. Some of these observations are visual confirmations of known
facts, some observations are highly speculative, some are just descriptions of what the users saw.

In Table B.3, finally, we list all suggestions for future improvements mentioned by the users.

Table B.1: Research focus of the case study participants.

User Research Focus

P1 Understanding vision in humans and machines, with a special focus on Deep Learning interpretability and feature
visualizations.

P2 On the interface between psychophysics and deep learning, in particular understanding how object recognition differs
between humans and machines.

P3 Detection and interpretation of failure cases of computer vision models.

P4 Learning more robust, safe, and verifiable machine learning models.

P5 Designing interpretable deep learning models.
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Table B.2: Observations reported by the participants in our case studies, including references to corresponding
exemplary scenarios.

User Observation Reference

Geometric Perturbations

P3 The adversarially trained model is robust to translation when the dog is viewed from the side,
while the standard model fluctuates.

P3 Zooming into the race car makes the Stylized-ImageNet trained model predict a school bus,
which is incorrect.

P4 Rotation affects the class output of the adversarially trained model more than that of the standard
model.

Section A.8

P5 The adversarially trained model tends to misclassify the scene more often upon viewpoint changes
than the standard model.

Section A.8

P5 The adversarially trained model seems to be less sensitive to object distance (zoom).

Scene Perturbations

P3 Background blur makes the adversarially trained model less consistent. The adversarially trained
model seems to use the background more than the standard model.

Section 6.2 (main paper)

P5 Background significantly alters the decisions made by the adversarially trained model. This is
less apparent for the standard model.

Section 6.2 (main paper)

Object Morphing

P1 The cat is predicted surprisingly “late”. Section A.1

P2 Predictions first change to another dog class before they switch to a cat. Section A.1

P3 Activations for dog-related neurons do not necessarily peak at “pure” dog images.

Frequency Decomposition

P1 The strong influence of frequency decomposition operations on the class predictions is surprising.

P2 The Stylized-ImageNet trained model is more robust under blur than expected. Section A.4

Patch Shuffling

P2 The target class is soon difficult to predict for a human, but it is still correctly predicted by the
model

Section A.2

Adversarial Attacks

P2 Adversarial attacks only affect the standard model. Section A.6

P4 Adversarial attacks change the activations of the early layers very little. The activations seem to
change more on the later layers.

P4 An adversarial attack on a car scene towards “badger” leads to fur neurons getting activated.

Complex Perturbations

P2 A small rotation in combination with an unusual background is sufficient to disturb the adver-
sarially trained model.

Section A.9

P3 The untextured dog head can be quite certainly predicted by the adversarially trained model,
but leads to a hammerhead prediction upon close-up for the standard model. Texture makes
predictions more certain, but blurred texture (coloring) also helps.

P3 Rotation has a strong influence in combination with low texture influence and zooming.

Feature Visualizations & Activation Maps

P1, P3 Feature visualizations of the adversarially trained model look more “intuitive” / “cartoonish”.

P2 Eye detectors react to surprisingly many regions in the street background image.

P4 The lack of differences of activation maps between models is suprising. The only major differences
were observable during adversarial attacks.
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Table B.3: Suggestions for improvement provided by the participants of the study.

User Suggestion for Improvement

Scene Perturbations

P1 Allow users to upload custom background images.

P2 Support background rotation.

P3 Object texture could be more detailed.

Adversarial Attacks

P4 Change the scene behind the adversarial attack instead of adversarial attack being tied to a fixed image.

Feature Visualizations

P1 Show dataset examples (i.e., strongly activating examples from the training data) instead of / in addition to feature
visualizations.

P3 Support different feature visualizations.

General Suggestions

P1 Provide more guidance through the interface, otherwise it can be overwhelming.

P1, P3 Provide more 3D models.

P3 Show dataset examples with similar activations as the current input scene.

P5 Perform a grid search to systematically generate input images and store the results for quantitative evaluation.
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